Targeted p16(Ink4a) epimutation causes tumorigenesis and reduces survival in mice.
نویسندگان
چکیده
Cancer has long been viewed as a genetic disease; however, epigenetic silencing as the result of aberrant promoter DNA methylation is frequently associated with cancer development, suggesting an epigenetic component to the disease. Nonetheless, it has remained unclear whether an epimutation (an aberrant change in epigenetic regulation) can induce tumorigenesis. Here, we exploited a functionally validated cis-acting regulatory element and devised a strategy to induce developmentally regulated genomic targeting of DNA methylation. We used this system to target DNA methylation within the p16(Ink4a) promoter in mice in vivo. Engineered p16(Ink4a) promoter hypermethylation led to transcriptional suppression in somatic tissues during aging and increased the incidence of spontaneous cancers in these mice. Further, mice carrying a germline p16(Ink4a) mutation in one allele and a somatic epimutation in the other had accelerated tumor onset and substantially shortened tumor-free survival. Taken together, these results provide direct functional evidence that p16(Ink4a) epimutation drives tumor formation and malignant progression and validate a targeted methylation approach to epigenetic engineering.
منابع مشابه
The role of Ink4a/Arf in ErbB2 mammary gland tumorigenesis.
Most human tumors display inactivation of the p53 and the p16(INK4)/pRb pathway. The Ink4a/alternative reading frame (ARF) locus encodes the p16(INK4a) and p14(ARF) (murine p19(ARF)) proteins. p16(INK4a) is deleted in 40-60% of breast cancer cell lines, and p16(INK4a) inactivation by DNA methylation occurs in < or =30% of human breast cancers. In mice genetically heterozygous for p16(INK4a) or ...
متن کاملThe inhibitor of cyclin-dependent kinase 4a/alternative reading frame (INK4a/ARF) locus encoded proteins p16INK4a and p19ARF repress cyclin D1 transcription through distinct cis elements.
The Ink4a/Arf locus encodes two structurally unrelated tumor suppressor proteins, p16(INK4a) and p14(ARF) (murine p19(ARF)). Invariant inactivation of either the p16(INK4a)-cyclin D/CDK-pRb pathway and/or p53-p14(ARF) pathway occurs in most human tumors. Cyclin D1 is frequently overexpressed in breast cancer cells contributing an alternate mechanism inactivating the p16(INK4a)/pRb pathway. Targ...
متن کاملAblation of the p16INK4a tumour suppressor reverses ageing phenotypes of klotho mice
The p16(INK4a) tumour suppressor has an established role in the implementation of cellular senescence in stem/progenitor cells, which is thought to contribute to organismal ageing. However, since p16(INK4a) knockout mice die prematurely from cancer, whether p16(INK4a) reduces longevity remains unclear. Here we show that, in mutant mice homozygous for a hypomorphic allele of the α-klotho ageing-...
متن کاملThe Inhibitor of Cyclin-Dependent Kinase 4a/Alternative Reading Frame (INK4a/ARF) Locus Encoded Proteins p16 and p19 Repress Cyclin D1 Transcription through Distinct cis Elements
The Ink4a/Arf locus encodes two structurally unrelated tumor suppressor proteins, p16 and p14 (murine p19). Invariant inactivation of either the p16-cyclin D/CDK-pRb pathway and/or p53-p14 pathway occurs in most human tumors. Cyclin D1 is frequently overexpressed in breast cancer cells contributing an alternate mechanism inactivating the p16/pRb pathway. Targeted overexpression of cyclin D1 to ...
متن کاملMonitoring Tumorigenesis and Senescence In Vivo with a p16INK4a-Luciferase Model
Monitoring cancer and aging in vivo remains experimentally challenging. Here, we describe a luciferase knockin mouse (p16(LUC)), which faithfully reports expression of p16(INK4a), a tumor suppressor and aging biomarker. Lifelong assessment of luminescence in p16(+/LUC) mice revealed an exponential increase with aging, which was highly variable in a cohort of contemporaneously housed, syngeneic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 124 9 شماره
صفحات -
تاریخ انتشار 2014